View Project

Norwegian AI Directory

High resolution wind farm simulations with CFD for Wind Resource Assessment and Forecasting


Wind energy is a volatile energy source which is not always available when it is needed. Therefore, it is very important to have an accurate wind power forecast such that other energy sources can be used to balance the energy feed into the electrical grid. WindSim AS has developed forecasting systems based on Artificial Neural Networks (ANN) and based on Computational Fluid Dynamics (CFD). The ANN solutions are very efficient when the focus is only on predicting the wind speed at the turbine positions. But the power output of a wind farm depends also on the turbulence inside the wind farm and the wake effects between the turbines. To model the turbulence and wake effects inside a wind farm the best physical description is a dynamical downscaling of numerical weather prediction models. Those models are typically run on a horizontal grid of several kilometers which is too coarse to describe the detailed flow field inside a wind farm. Downscaling those predictions with a CFD model we can obtain horizontal resolutions of around 10 meters. To be able to make meaningful predictions the downscaling should be run as so called transient simulations which makes it possible to calculate the time dependent behavior of the wind field and thereby the turbulence. The purpose of this project is to establish an efficient meso-microscale coupling, answering the following questions: - Can the TKE profiles from the mesoscale be used or is there a better formulation how to calculate the TKE inlet profiles? - Can the turbulence prediction be improved by using more advanced turbulence models and can the wake prediction be improved by better models? - Is Large?Eddy Simulation (LES) superior to Reynolds averaged Navier-Stokes (RANS) simulation or can transient RANS simulation work well for industrial application? - What is the economic benefit of a meso-microscale coupling with regard to a better wind power forecast compared to the ANN methods when we consider the imbalance costs?

Project leader: Arne Reidar Gravdahl

Started: 2017

Ends: 2020

Category: Næringsliv

Sector: Næringsliv

Budget: 1619000

Institution: WINDSIM AS

Address: Tønsberg