View Project

Norwegian AI Directory

Deep learning cancer diagnostics from diffusion-weighted magnetic resonance imaging


The standard approach to investigating cancer using magnetic resonance imaging (MRI) involves the injection of a potentially harmful contrast agent. Such contrast is contraindicative for patients who are pregnant, breast-feeding, or have kidney problems, and recent studies have also found evidence of long-term contrast deposition in the brain. Intravoxel incoherent motion (IVIM) MRI is the most promising approach to safe, non-contrast perfusion imaging for cancer diagnosis and treatment monitoring. However, IVIM suffers from high sensitivity to measurement noise and imaging artefacts, and has very long acquisition times, such that currently it is not clinically feasible. We propose a radical new approach to sampling IVIM data that will drastically reduce acquisition time and ameliorate several artefacts. We will use deep learning to enable efficient data acquisition, robust image reconstruction, and accurate IVIM parameter estimation. Deep learning has never before been applied to MRI in this manner, and it is especially well-suited to IVIM imaging. Successful outcomes promise to herald a new age in MRI pulse sequence development, and to transform current clinical strategies in oncology.

Project leader: Peter While

Started: 2020

Ends: 2023

Category: Helse Midt RHF

Sector: Helseforetak

Budget: 11992000

Institution: Klinikk for bildediagnostikk

Address: Trondheim